Neuro-Fuzzy Approaches for Forecasting Electrical Load Using Additional Moving Average Window Data Filter on Takagi-Sugeno Type MISO Networks

نویسندگان

  • Felix Pasila
  • Ajoy Kumar Palit
  • Georg Thiele
چکیده

The paper describes a Neuro-fuzzy approach with additional moving average window data filter and fuzzy clustering algorithm that can be used to forecast electrical load using the Takagi-Sugeno (TS) type multi-input single-output (MISO) neurofuzzy network efficiently. The training algorithm is efficient in the sense that it can bring the performance index of the network, such as the sum squared error (SSE), down to the desired error goal much faster than that the simple LevenbergMarquardt algorithm (LMA). Finally, the above training algorithm is tested on neuro-fuzzy modeling and long-term forecasting application of Electrical load time series.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long-term Forecasting of Electrical Load using Gustafson-Kessel clustering algorithm on Takagi-Sugeno type MISO Neuro- Fuzzy network

1.1. Problem definition: Neuro-Fuzzy Approach in Electrical Load Forecasting Modeling and identification of electrical load processes are essential for the operation and also planning of a utility either for a company or for a country. Electrical load forecasting is needed because people intend to make important decision on generating power generators, load switching, purchasing strategy and al...

متن کامل

Identification of Cement Rotary Kiln in Noisy Condition using Takagi-Sugeno Neuro-fuzzy System

Cement rotary kiln is the main part of cement production process that have always attracted many researchers’ attention. But this complex nonlinear system has not been modeled efficiently which can make an appropriate performance specially in noisy condition. In this paper Takagi-Sugeno neuro-fuzzy system (TSNFS) is used for identification of cement rotary kiln, and gradient descent (GD) algori...

متن کامل

Fuzzy Instrumental Variable Algorithm for Online Multivariable Neural Identification

Abstract. In this paper an algorithm for neuro-fuzzy identification of multivariable discrete-time nonlinear dynamical systems is proposed based on a decomposed form as a set of coupled multiple input and single output (MISO) Takagi-Sugeno (TS) neuro-fuzzy networks. An on-line scheme is formulated for modeling a nonlinear autoregressive with exogenous input (NARX) neuro-fuzzy structure from sam...

متن کامل

Prediction Intervals for Short-Term Load Forecasting Neuro-Fuzzy Models

In the paper the problem of estimation of the prediction intervals (error bars) for the family neuro-fuzzy Short-Term Load Forecasting (STLF) models is discussed. We investigate two neuro-fuzzy networks: Fuzzy Basis Function (FBF) Networks, and linear neuro-fuzzy model with Tagagi-Sugeno reasoning. The paper contains comparison of selected most important methods for error bars calculation (anal...

متن کامل

Electricity Load Forecasting by Combining Adaptive Neuro-fuzzy Inference System and Seasonal Auto-Regressive Integrated Moving Average

Nowadays, electricity load forecasting, as one of the most important areas, plays a crucial role in the economic process. What separates electricity from other commodities is the impossibility of storing it on a large scale and cost-effective construction of new power generation and distribution plants. Also, the existence of seasonality, nonlinear complexity, and ambiguity pattern in electrici...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JACIII

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2008